numpy.asanyarray
- 
numpy.asanyarray(a, dtype=None, order=None)[source]
- 
Convert the input to an ndarray, but pass ndarray subclasses through. Parameters: - 
a : array_like
- 
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays. 
- 
dtype : data-type, optional
- 
By default, the data-type is inferred from the input data. 
- 
order : {‘C’, ‘F’}, optional
- 
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. 
 Returns: - 
out : ndarray or an ndarray subclass
- 
Array interpretation of a. Ifais an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.
 See also - 
 asarray
- Similar function which always returns ndarrays.
- 
 ascontiguousarray
- Convert input to a contiguous array.
- 
 asfarray
- Convert input to a floating point ndarray.
- 
 asfortranarray
- Convert input to an ndarray with column-major memory order.
- 
 asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
- 
 fromiter
- Create an array from an iterator.
- 
 fromfunction
- Construct an array by executing a function on grid positions.
 ExamplesConvert a list into an array: >>> a = [1, 2] >>> np.asanyarray(a) array([1, 2]) Instances of ndarraysubclasses are passed through as-is:>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asanyarray(a) is a True 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.asanyarray.html