numpy.bitwise_and
- 
numpy.bitwise_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_and'>
- 
Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator &.Parameters: - 
x1, x2 : array_like
- 
Only integer and boolean types are handled. 
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- 
where : array_like, optional
- 
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. 
- **kwargs
- 
For other keyword-only arguments, see the ufunc docs. 
 Returns: - 
out : ndarray or scalar
- 
Result. This is a scalar if both x1andx2are scalars.
 See also logical_and,bitwise_or,bitwise_xor- 
 binary_repr
- Return the binary representation of the input number as a string.
 ExamplesThe number 13 is represented by 00001101. Likewise, 17 is represented by00010001. The bit-wise AND of 13 and 17 is therefore000000001, or 1:>>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.bitwise_and.html