numpy.polynomial.chebyshev.chebder
- 
numpy.polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)[source]
- 
Differentiate a Chebyshev series. Returns the Chebyshev series coefficients cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*T_0 + 2*T_1 + 3*T_2while [[1,2],[1,2]] represents1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)if axis=0 isxand axis=1 isy.Parameters: - 
c : array_like
- 
Array of Chebyshev series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. 
- 
m : int, optional
- 
Number of derivatives taken, must be non-negative. (Default: 1) 
- 
scl : scalar, optional
- 
Each differentiation is multiplied by scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1)
- 
axis : int, optional
- 
Axis over which the derivative is taken. (Default: 0). New in version 1.7.0. 
 Returns: - 
der : ndarray
- 
Chebyshev series of the derivative. 
 See also NotesIn general, the result of differentiating a C-series needs to be “reprojected” onto the C-series basis set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below. Examples>>> from numpy.polynomial import chebyshev as C >>> c = (1,2,3,4) >>> C.chebder(c) array([ 14., 12., 24.]) >>> C.chebder(c,3) array([ 96.]) >>> C.chebder(c,scl=-1) array([-14., -12., -24.]) >>> C.chebder(c,2,-1) array([ 12., 96.]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.polynomial.chebyshev.chebder.html