numpy.spacing
- 
numpy.spacing(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'spacing'>
- 
Return the distance between x and the nearest adjacent number. Parameters: - 
x : array_like
- 
Values to find the spacing of. 
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- 
where : array_like, optional
- 
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. 
- **kwargs
- 
For other keyword-only arguments, see the ufunc docs. 
 Returns: - 
out : ndarray or scalar
- 
The spacing of values of x. This is a scalar ifxis a scalar.
 NotesIt can be considered as a generalization of EPS: spacing(np.float64(1)) == np.finfo(np.float64).eps, and there should not be any representable number betweenx + spacing(x)and x for any finite x.Spacing of +- inf and NaN is NaN. Examples>>> np.spacing(1) == np.finfo(np.float64).eps True 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.spacing.html