numpy.searchsorted
- 
numpy.searchsorted(a, v, side='left', sorter=None)[source]
- 
Find indices where elements should be inserted to maintain order. Find the indices into a sorted array asuch that, if the corresponding elements invwere inserted before the indices, the order ofawould be preserved.Assuming that ais sorted:sidereturned index isatisfiesleft a[i-1] < v <= a[i]right a[i-1] <= v < a[i]Parameters: - 
a : 1-D array_like
- 
Input array. If sorteris None, then it must be sorted in ascending order, otherwisesortermust be an array of indices that sort it.
- 
v : array_like
- 
Values to insert into a.
- 
side : {‘left’, ‘right’}, optional
- 
If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a).
- 
sorter : 1-D array_like, optional
- 
Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. New in version 1.7.0. 
 Returns: - 
indices : array of ints
- 
Array of insertion points with the same shape as v.
 NotesBinary search is used to find the required insertion points. As of NumPy 1.4.0 searchsortedworks with real/complex arrays containingnanvalues. The enhanced sort order is documented insort.This function is a faster version of the builtin python bisect.bisect_left(side='left') andbisect.bisect_right(side='right') functions, which is also vectorized in thevargument.Examples>>> np.searchsorted([1,2,3,4,5], 3) 2 >>> np.searchsorted([1,2,3,4,5], 3, side='right') 3 >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) array([0, 5, 1, 2]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.searchsorted.html