numpy.indices
- 
numpy.indices(dimensions, dtype=<class 'int'>)[source]
- 
Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0,1,… varying only along the corresponding axis. Parameters: - 
dimensions : sequence of ints
- 
The shape of the grid. 
- 
dtype : dtype, optional
- 
Data type of the result. 
 Returns: - 
grid : ndarray
- 
The array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions).
 NotesThe output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if dimensionsis a tuple(r0, ..., rN-1)of lengthN, the output shape is(N,r0,...,rN-1).The subarrays grid[k]contains the N-D array of indices along thek-thaxis. Explicitly:grid[k,i0,i1,...,iN-1] = ik Examples>>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]]) >>> grid[1] # column indices array([[0, 1, 2], [0, 1, 2]])The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0, 1, 2], [4, 5, 6]])Note that it would be more straightforward in the above example to extract the required elements directly with x[:2, :3].
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.indices.html