numpy.ufunc.accumulate
method
- 
ufunc.accumulate(array, axis=0, dtype=None, out=None)
- 
Accumulate the result of applying the operator to all elements. For a one-dimensional array, accumulate produces results equivalent to: r = np.empty(len(A)) t = op.identity # op = the ufunc being applied to A's elements for i in range(len(A)): t = op(t, A[i]) r[i] = t return rFor example, add.accumulate() is equivalent to np.cumsum(). For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples below) so repeated use is necessary if one wants to accumulate over multiple axes. Parameters: - 
array : array_like
- 
The array to act on. 
- 
axis : int, optional
- 
The axis along which to apply the accumulation; default is zero. 
- 
dtype : data-type code, optional
- 
The data-type used to represent the intermediate results. Defaults to the data-type of the output array if such is provided, or the the data-type of the input array if no output array is provided. 
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If not provided or None, a freshly-allocated array is returned. For consistency with ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.Changed in version 1.13.0: Tuples are allowed for keyword argument. 
 Returns: - 
r : ndarray
- 
The accumulated values. If outwas supplied,ris a reference toout.
 Examples1-D array examples: >>> np.add.accumulate([2, 3, 5]) array([ 2, 5, 10]) >>> np.multiply.accumulate([2, 3, 5]) array([ 2, 6, 30]) 2-D array examples: >>> I = np.eye(2) >>> I array([[ 1., 0.], [ 0., 1.]])Accumulate along axis 0 (rows), down columns: >>> np.add.accumulate(I, 0) array([[ 1., 0.], [ 1., 1.]]) >>> np.add.accumulate(I) # no axis specified = axis zero array([[ 1., 0.], [ 1., 1.]])Accumulate along axis 1 (columns), through rows: >>> np.add.accumulate(I, 1) array([[ 1., 1.], [ 0., 1.]])
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ufunc.accumulate.html