numpy.zeros_like
- 
numpy.zeros_like(a, dtype=None, order='K', subok=True)[source]
- 
Return an array of zeros with the same shape and type as a given array. Parameters: - 
a : array_like
- 
The shape and data-type of adefine these same attributes of the returned array.
- 
dtype : data-type, optional
- 
Overrides the data type of the result. New in version 1.6.0. 
- 
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional
- 
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if ais Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofaas closely as possible.New in version 1.6.0. 
- 
subok : bool, optional.
- 
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True. 
 Returns: - 
out : ndarray
- 
Array of zeros with the same shape and type as a.
 See also - 
 empty_like
- Return an empty array with shape and type of input.
- 
 ones_like
- Return an array of ones with shape and type of input.
- 
 full_like
- Return a new array with shape of input filled with value.
- 
 zeros
- Return a new array setting values to zero.
 Examples>>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]])>>> y = np.arange(3, dtype=float) >>> y array([ 0., 1., 2.]) >>> np.zeros_like(y) array([ 0., 0., 0.]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.zeros_like.html