numpy.linalg.eigvals
- 
numpy.linalg.eigvals(a)[source]
- 
Compute the eigenvalues of a general matrix. Main difference between eigvalsandeig: the eigenvectors aren’t returned.Parameters: - 
a : (…, M, M) array_like
- 
A complex- or real-valued matrix whose eigenvalues will be computed. 
 Returns: - 
w : (…, M,) ndarray
- 
The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. 
 Raises: - LinAlgError
- 
If the eigenvalue computation does not converge. 
 See also NotesNew in version 1.8.0. Broadcasting rules apply, see the numpy.linalgdocumentation for details.This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. ExamplesIllustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, Q, and on the right byQ.T(the transpose ofQ), preserves the eigenvalues of the “middle” matrix. In other words, ifQis orthogonal, thenQ * A * Q.Thas the same eigenvalues asA:>>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.linalg.eigvals.html