numpy.bitwise_xor
- 
numpy.bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_xor'>
- 
Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ^.Parameters: - 
x1, x2 : array_like
- 
Only integer and boolean types are handled. 
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- 
where : array_like, optional
- 
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. 
- **kwargs
- 
For other keyword-only arguments, see the ufunc docs. 
 Returns: - 
out : ndarray or scalar
- 
Result. This is a scalar if both x1andx2are scalars.
 See also logical_xor,bitwise_and,bitwise_or- 
 binary_repr
- Return the binary representation of the input number as a string.
 ExamplesThe number 13 is represented by 00001101. Likewise, 17 is represented by00010001. The bit-wise XOR of 13 and 17 is therefore00011100, or 28:>>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.bitwise_xor.html