numpy.random.poisson
- 
numpy.random.poisson(lam=1.0, size=None)
- 
Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters: - 
lam : float or array_like of floats
- 
Expectation of interval, should be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. 
- 
size : int or tuple of ints, optional
- 
Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned iflamis a scalar. Otherwise,np.array(lam).sizesamples are drawn.
 Returns: - 
out : ndarray or scalar
- 
Drawn samples from the parameterized Poisson distribution. 
 NotesThe Poisson distribution For events with an expected separation the Poisson distribution describes the probability of events occurring within the observed interval . Because the output is limited to the range of the C long type, a ValueError is raised when lamis within 10 sigma of the maximum representable value.References[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html [2] Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution ExamplesDraw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.poisson.html