numpy.asarray
- 
numpy.asarray(a, dtype=None, order=None)[source]
- 
Convert the input to an array. Parameters: - 
a : array_like
- 
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. 
- 
dtype : data-type, optional
- 
By default, the data-type is inferred from the input data. 
- 
order : {‘C’, ‘F’}, optional
- 
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. 
 Returns: - 
out : ndarray
- 
Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. Ifais a subclass of ndarray, a base class ndarray is returned.
 See also - 
 asanyarray
- Similar function which passes through subclasses.
- 
 ascontiguousarray
- Convert input to a contiguous array.
- 
 asfarray
- Convert input to a floating point ndarray.
- 
 asfortranarray
- Convert input to an ndarray with column-major memory order.
- 
 asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
- 
 fromiter
- Create an array from an iterator.
- 
 fromfunction
- Construct an array by executing a function on grid positions.
 ExamplesConvert a list into an array: >>> a = [1, 2] >>> np.asarray(a) array([1, 2]) Existing arrays are not copied: >>> a = np.array([1, 2]) >>> np.asarray(a) is a True If dtypeis set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False Contrary to asanyarray, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.asarray.html