numpy.float_power
- 
numpy.float_power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'float_power'>
- 
First array elements raised to powers from second array, element-wise. Raise each base in x1to the positionally-corresponding power inx2.x1andx2must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers.New in version 1.12.0. Parameters: - 
x1 : array_like
- 
The bases. 
- 
x2 : array_like
- 
The exponents. 
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- 
where : array_like, optional
- 
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. 
- **kwargs
- 
For other keyword-only arguments, see the ufunc docs. 
 Returns: - 
y : ndarray
- 
The bases in x1raised to the exponents inx2. This is a scalar if bothx1andx2are scalars.
 See also - 
 power
- power function that preserves type
 ExamplesCube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]])
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.float_power.html