numpy.ma.masked_object
- 
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]
- 
Mask the array xwhere the data are exactly equal to value.This function is similar to masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.Parameters: - 
x : array_like
- 
Array to mask 
- 
value : object
- 
Comparison value 
- 
copy : {True, False}, optional
- 
Whether to return a copy of x.
- 
shrink : {True, False}, optional
- 
Whether to collapse a mask full of False to nomask 
 Returns: - 
result : MaskedArray
- 
The result of masking xwhere equal tovalue.
 See also - 
 masked_where
- Mask where a condition is met.
- 
 masked_equal
- Mask where equal to a given value (integers).
- 
 masked_values
- Mask using floating point equality.
 Examples>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> print(eat) [-- ham] >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> print(eat) [cheese ham pineapple] Note that maskis set tonomaskif possible.>>> eat masked_array(data = [cheese ham pineapple], mask = False, fill_value=?)
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.masked_object.html