numpy.polynomial.hermite_e.hermeder
- 
numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)[source]
- 
Differentiate a Hermite_e series. Returns the series coefficients cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*He_0 + 2*He_1 + 3*He_2while [[1,2],[1,2]] represents1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)if axis=0 isxand axis=1 isy.Parameters: - 
c : array_like
- 
Array of Hermite_e series coefficients. If cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.
- 
m : int, optional
- 
Number of derivatives taken, must be non-negative. (Default: 1) 
- 
scl : scalar, optional
- 
Each differentiation is multiplied by scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1)
- 
axis : int, optional
- 
Axis over which the derivative is taken. (Default: 0). New in version 1.7.0. 
 Returns: - 
der : ndarray
- 
Hermite series of the derivative. 
 See also NotesIn general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below. Examples>>> from numpy.polynomial.hermite_e import hermeder >>> hermeder([ 1., 1., 1., 1.]) array([ 1., 2., 3.]) >>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2) array([ 1., 2., 3.]) 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.polynomial.hermite_e.hermeder.html