numpy.ma.masked_where
- 
numpy.ma.masked_where(condition, a, copy=True)[source]
- 
Mask an array where a condition is met. Return aas an array masked whereconditionis True. Any masked values ofaorconditionare also masked in the output.Parameters: - 
condition : array_like
- 
Masking condition. When conditiontests floating point values for equality, consider usingmasked_valuesinstead.
- 
a : array_like
- 
Array to mask. 
- 
copy : bool
- 
If True (default) make a copy of ain the result. If False modifyain place and return a view.
 Returns: - 
result : MaskedArray
- 
The result of masking awhereconditionis True.
 See also - 
 masked_values
- Mask using floating point equality.
- 
 masked_equal
- Mask where equal to a given value.
- 
 masked_not_equal
- Mask where notequal to a given value.
- 
 masked_less_equal
- Mask where less than or equal to a given value.
- 
 masked_greater_equal
- Mask where greater than or equal to a given value.
- 
 masked_less
- Mask where less than a given value.
- 
 masked_greater
- Mask where greater than a given value.
- 
 masked_inside
- Mask inside a given interval.
- 
 masked_outside
- Mask outside a given interval.
- 
 masked_invalid
- Mask invalid values (NaNs or infs).
 Examples>>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_where(a <= 2, a) masked_array(data = [-- -- -- 3], mask = [ True True True False], fill_value=999999)Mask array bconditional ona.>>> b = ['a', 'b', 'c', 'd'] >>> ma.masked_where(a == 2, b) masked_array(data = [a b -- d], mask = [False False True False], fill_value=N/A)Effect of the copyargument.>>> c = ma.masked_where(a <= 2, a) >>> c masked_array(data = [-- -- -- 3], mask = [ True True True False], fill_value=999999) >>> c[0] = 99 >>> c masked_array(data = [99 -- -- 3], mask = [False True True False], fill_value=999999) >>> a array([0, 1, 2, 3]) >>> c = ma.masked_where(a <= 2, a, copy=False) >>> c[0] = 99 >>> c masked_array(data = [99 -- -- 3], mask = [False True True False], fill_value=999999) >>> a array([99, 1, 2, 3])When conditionoracontain masked values.>>> a = np.arange(4) >>> a = ma.masked_where(a == 2, a) >>> a masked_array(data = [0 1 -- 3], mask = [False False True False], fill_value=999999) >>> b = np.arange(4) >>> b = ma.masked_where(b == 0, b) >>> b masked_array(data = [-- 1 2 3], mask = [ True False False False], fill_value=999999) >>> ma.masked_where(a == 3, b) masked_array(data = [-- 1 -- --], mask = [ True False True True], fill_value=999999)
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.masked_where.html