numpy.random.geometric
- 
numpy.random.geometric(p, size=None)
- 
Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, k = 1, 2, ....The probability mass function of the geometric distribution is where pis the probability of success of an individual trial.Parameters: - 
p : float or array_like of floats
- 
The probability of success of an individual trial. 
- 
size : int or tuple of ints, optional
- 
Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned ifpis a scalar. Otherwise,np.array(p).sizesamples are drawn.
 Returns: - 
out : ndarray or scalar
- 
Drawn samples from the parameterized geometric distribution. 
 ExamplesDraw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.geometric.html