numpy.ma.notmasked_contiguous
- 
numpy.ma.notmasked_contiguous(a, axis=None)[source]
- 
Find contiguous unmasked data in a masked array along the given axis. Parameters: - 
a : array_like
- 
The input array. 
- 
axis : int, optional
- 
Axis along which to perform the operation. If None (default), applies to a flattened version of the array, and this is the same as flatnotmasked_contiguous.
 Returns: - 
endpoints : list
- 
A list of slices (start and end indexes) of unmasked indexes in the array. If the input is 2d and axis is specified, the result is a list of lists. 
 See also flatnotmasked_edges,flatnotmasked_contiguous,notmasked_edges,clump_masked,clump_unmaskedNotesOnly accepts 2-D arrays at most. Examples>>> a = np.arange(12).reshape((3, 4)) >>> mask = np.zeros_like(a) >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0 >>> ma = np.ma.array(a, mask=mask) >>> ma masked_array( data=[[0, --, 2, 3], [--, --, --, 7], [8, --, --, 11]], mask=[[False, True, False, False], [ True, True, True, False], [False, True, True, False]], fill_value=999999) >>> np.array(ma[~ma.mask]) array([ 0, 2, 3, 7, 8, 11])>>> np.ma.notmasked_contiguous(ma) [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)] >>> np.ma.notmasked_contiguous(ma, axis=0) [[slice(0, 1, None), slice(2, 3, None)], # column broken into two segments [], # fully masked column [slice(0, 1, None)], [slice(0, 3, None)]] >>> np.ma.notmasked_contiguous(ma, axis=1) [[slice(0, 1, None), slice(2, 4, None)], # row broken into two segments [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]] 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.notmasked_contiguous.html