numpy.ma.mask_rowcols
- 
numpy.ma.mask_rowcols(a, axis=None)[source]
- 
Mask rows and/or columns of a 2D array that contain masked values. Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axisparameter.- If axisis None, rows and columns are masked.
- If axisis 0, only rows are masked.
- If axisis 1 or -1, only columns are masked.
 Parameters: - 
a : array_like, MaskedArray
- 
The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with maskset tonomask(False). Must be a 2D array.
- 
axis : int, optional
- 
Axis along which to perform the operation. If None, applies to a flattened version of the array. 
 Returns: - 
a : MaskedArray
- 
A modified version of the input array, masked depending on the value of the axisparameter.
 Raises: - NotImplementedError
- 
If input array ais not 2D.
 See also - 
 mask_rows
- Mask rows of a 2D array that contain masked values.
- 
 mask_cols
- Mask cols of a 2D array that contain masked values.
- 
 masked_where
- Mask where a condition is met.
 NotesThe input array’s mask is modified by this function. Examples>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array(data = [[0 0 0] [0 -- 0] [0 0 0]], mask = [[False False False] [False True False] [False False False]], fill_value=999999) >>> ma.mask_rowcols(a) masked_array(data = [[0 -- 0] [-- -- --] [0 -- 0]], mask = [[False True False] [ True True True] [False True False]], fill_value=999999)
- If 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.mask_rowcols.html