numpy.logical_xor
- 
numpy.logical_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_xor'>
- 
Compute the truth value of x1 XOR x2, element-wise. Parameters: - 
x1, x2 : array_like
- 
Logical XOR is applied to the elements of x1andx2. They must be broadcastable to the same shape.
- 
out : ndarray, None, or tuple of ndarray and None, optional
- 
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- 
where : array_like, optional
- 
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. 
- **kwargs
- 
For other keyword-only arguments, see the ufunc docs. 
 Returns: - 
y : bool or ndarray of bool
- 
Boolean result of the logical XOR operation applied to the elements of x1andx2; the shape is determined by whether or not broadcasting of one or both arrays was required. This is a scalar if bothx1andx2are scalars.
 See also Examples>>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False]) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True]) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]])
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.logical_xor.html