numpy.linalg.tensorinv
- 
numpy.linalg.tensorinv(a, ind=2)[source]
- 
Compute the ‘inverse’ of an N-dimensional array. The result is an inverse for arelative to the tensordot operationtensordot(a, b, ind), i. e., up to floating-point accuracy,tensordot(tensorinv(a), a, ind)is the “identity” tensor for the tensordot operation.Parameters: - 
a : array_like
- 
Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind]) == prod(a.shape[ind:]).
- 
ind : int, optional
- 
Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. 
 Returns: - 
b : ndarray
- 
a’s tensordot inverse, shapea.shape[ind:] + a.shape[:ind].
 Raises: - LinAlgError
- 
If ais singular or not ‘square’ (in the above sense).
 See also Examples>>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True 
- 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.linalg.tensorinv.html