sklearn.cluster.SpectralCoclustering
- 
class sklearn.cluster.SpectralCoclustering(n_clusters=3, *, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs='deprecated', random_state=None)[source]
- 
Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array Xto solve the relaxed normalized cut of the bipartite graph created fromXas follows: the edge between row vertexiand column vertexjhas weightX[i, j].The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the User Guide. - Parameters
- 
- 
n_clustersint, default=3
- 
The number of biclusters to find. 
- 
svd_method{‘randomized’, ‘arpack’}, default=’randomized’
- 
Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’. If ‘randomized’, use sklearn.utils.extmath.randomized_svd, which may be faster for large matrices. If ‘arpack’, usescipy.sparse.linalg.svds, which is more accurate, but possibly slower in some cases.
- 
n_svd_vecsint, default=None
- 
Number of vectors to use in calculating the SVD. Corresponds to ncvwhensvd_method=arpackandn_oversampleswhensvd_methodis ‘randomized`.
- 
mini_batchbool, default=False
- 
Whether to use mini-batch k-means, which is faster but may get different results. 
- 
init{‘k-means++’, ‘random’, or ndarray of shape (n_clusters, n_features), default=’k-means++’
- 
Method for initialization of k-means algorithm; defaults to ‘k-means++’. 
- 
n_initint, default=10
- 
Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. 
- 
n_jobsint, default=None
- 
The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.Deprecated since version 0.23: n_jobswas deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25).
- 
random_stateint, RandomState instance, default=None
- 
Used for randomizing the singular value decomposition and the k-means initialization. Use an int to make the randomness deterministic. See Glossary. 
 
- 
- Attributes
- 
- 
rows_array-like of shape (n_row_clusters, n_rows)
- 
Results of the clustering. rows[i, r]is True if clustericontains rowr. Available only after callingfit.
- 
columns_array-like of shape (n_column_clusters, n_columns)
- 
Results of the clustering, like rows.
- 
row_labels_array-like of shape (n_rows,)
- 
The bicluster label of each row. 
- 
column_labels_array-like of shape (n_cols,)
- 
The bicluster label of each column. 
 
- 
 References- Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.
 Examples>>> from sklearn.cluster import SpectralCoclustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X) >>> clustering.row_labels_ array([0, 1, 1, 0, 0, 0], dtype=int32) >>> clustering.column_labels_ array([0, 0], dtype=int32) >>> clustering SpectralCoclustering(n_clusters=2, random_state=0) Methodsfit(X[, y])Creates a biclustering for X. get_indices(i)Row and column indices of the i’th bicluster.get_params([deep])Get parameters for this estimator. get_shape(i)Shape of the i’th bicluster.get_submatrix(i, data)Return the submatrix corresponding to bicluster i.set_params(**params)Set the parameters of this estimator. - 
property biclusters_
- 
Convenient way to get row and column indicators together. Returns the rows_andcolumns_members.
 - 
fit(X, y=None)[source]
- 
Creates a biclustering for X. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
yIgnored
 
- 
 
 - 
get_indices(i)[source]
- 
Row and column indices of the i’th bicluster.Only works if rows_andcolumns_attributes exist.- Parameters
- 
- 
iint
- 
The index of the cluster. 
 
- 
- Returns
- 
- 
row_indndarray, dtype=np.intp
- 
Indices of rows in the dataset that belong to the bicluster. 
- 
col_indndarray, dtype=np.intp
- 
Indices of columns in the dataset that belong to the bicluster. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
get_shape(i)[source]
- 
Shape of the i’th bicluster.- Parameters
- 
- 
iint
- 
The index of the cluster. 
 
- 
- Returns
- 
- 
n_rowsint
- 
Number of rows in the bicluster. 
- 
n_colsint
- 
Number of columns in the bicluster. 
 
- 
 
 - 
get_submatrix(i, data)[source]
- 
Return the submatrix corresponding to bicluster i.- Parameters
- 
- 
iint
- 
The index of the cluster. 
- 
dataarray-like of shape (n_samples, n_features)
- 
The data. 
 
- 
- Returns
- 
- 
submatrixndarray of shape (n_rows, n_cols)
- 
The submatrix corresponding to bicluster i.
 
- 
 NotesWorks with sparse matrices. Only works if rows_andcolumns_attributes exist.
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.cluster.SpectralCoclustering
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.cluster.SpectralCoclustering.html