sklearn.datasets.make_blobs
- 
sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=- 10.0, 10.0, shuffle=True, random_state=None, return_centers=False)[source]
- 
Generate isotropic Gaussian blobs for clustering. Read more in the User Guide. - Parameters
- 
- 
n_samplesint or array-like, default=100
- 
If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster. Changed in version v0.20: one can now pass an array-like to the n_samplesparameter
- 
n_featuresint, default=2
- 
The number of features for each sample. 
- 
centersint or ndarray of shape (n_centers, n_features), default=None
- 
The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples. 
- 
cluster_stdfloat or array-like of float, default=1.0
- 
The standard deviation of the clusters. 
- 
center_boxtuple of float (min, max), default=(-10.0, 10.0)
- 
The bounding box for each cluster center when centers are generated at random. 
- 
shufflebool, default=True
- 
Shuffle the samples. 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
- 
return_centersbool, default=False
- 
If True, then return the centers of each cluster New in version 0.23. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, n_features)
- 
The generated samples. 
- 
yndarray of shape (n_samples,)
- 
The integer labels for cluster membership of each sample. 
- 
centersndarray of shape (n_centers, n_features)
- 
The centers of each cluster. Only returned if return_centers=True.
 
- 
 See also - 
 make_classification
- 
A more intricate variant. 
 Examples>>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0]) 
Examples using sklearn.datasets.make_blobs
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_blobs.html