sklearn.datasets.make_multilabel_classification
- 
sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, *, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None)[source]
- 
Generate a random multilabel classification problem. - For each sample, the generative process is:
- 
- pick the number of labels: n ~ Poisson(n_labels)
- n times, choose a class c: c ~ Multinomial(theta)
- pick the document length: k ~ Poisson(length)
- k times, choose a word: w ~ Multinomial(theta_c)
 
 In the above process, rejection sampling is used to make sure that n is never zero or more than n_classes, and that the document length is never zero. Likewise, we reject classes which have already been chosen.Read more in the User Guide. - Parameters
- 
- 
n_samplesint, default=100
- 
The number of samples. 
- 
n_featuresint, default=20
- 
The total number of features. 
- 
n_classesint, default=5
- 
The number of classes of the classification problem. 
- 
n_labelsint, default=2
- 
The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with n_labelsas its expected value, but samples are bounded (using rejection sampling) byn_classes, and must be nonzero ifallow_unlabeledis False.
- 
lengthint, default=50
- 
The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. 
- 
allow_unlabeledbool, default=True
- 
If True, some instances might not belong to any class.
- 
sparsebool, default=False
- 
If True, return a sparse feature matrixNew in version 0.17: parameter to allow sparse output. 
- 
return_indicator{‘dense’, ‘sparse’} or False, default=’dense’
- 
If 'dense'returnYin the dense binary indicator format. If'sparse'returnYin the sparse binary indicator format.Falsereturns a list of lists of labels.
- 
return_distributionsbool, default=False
- 
If True, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn.
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, n_features)
- 
The generated samples. 
- 
Y{ndarray, sparse matrix} of shape (n_samples, n_classes)
- 
The label sets. Sparse matrix should be of CSR format. 
- 
p_cndarray of shape (n_classes,)
- 
The probability of each class being drawn. Only returned if return_distributions=True.
- 
p_w_cndarray of shape (n_features, n_classes)
- 
The probability of each feature being drawn given each class. Only returned if return_distributions=True.
 
- 
 
Examples using sklearn.datasets.make_multilabel_classification
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_multilabel_classification.html