sklearn.decomposition.DictionaryLearning
- 
class sklearn.decomposition.DictionaryLearning(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)[source]
- 
Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem: (U^*,V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_componentsRead more in the User Guide. - Parameters
- 
- 
n_componentsint, default=n_features
- 
Number of dictionary elements to extract. 
- 
alphafloat, default=1.0
- 
Sparsity controlling parameter. 
- 
max_iterint, default=1000
- 
Maximum number of iterations to perform. 
- 
tolfloat, default=1e-8
- 
Tolerance for numerical error. 
- 
fit_algorithm{‘lars’, ‘cd’}, default=’lars’
- 
- 
'lars': uses the least angle regression method to solve the lasso problem (lars_path);
- 
'cd': uses the coordinate descent method to compute the Lasso solution (Lasso). Lars will be faster if the estimated components are sparse.
 New in version 0.17: cd coordinate descent method to improve speed. 
- 
- 
transform_algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’
- 
Algorithm used to transform the data: - 
'lars': uses the least angle regression method (lars_path);
- 
'lasso_lars': uses Lars to compute the Lasso solution.
- 
'lasso_cd': uses the coordinate descent method to compute the Lasso solution (Lasso).'lasso_lars'will be faster if the estimated components are sparse.
- 
'omp': uses orthogonal matching pursuit to estimate the sparse solution.
- 
'threshold': squashes to zero all coefficients less than alpha from the projectiondictionary * X'.
 New in version 0.17: lasso_cd coordinate descent method to improve speed. 
- 
- 
transform_n_nonzero_coefsint, default=None
- 
Number of nonzero coefficients to target in each column of the solution. This is only used by algorithm='lars'andalgorithm='omp'and is overridden byalphain theompcase. IfNone, thentransform_n_nonzero_coefs=int(n_features / 10).
- 
transform_alphafloat, default=None
- 
If algorithm='lasso_lars'oralgorithm='lasso_cd',alphais the penalty applied to the L1 norm. Ifalgorithm='threshold',alphais the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp',alphais the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs. IfNone, default to 1.0
- 
n_jobsint or None, default=None
- 
Number of parallel jobs to run. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.
- 
code_initndarray of shape (n_samples, n_components), default=None
- 
Initial value for the code, for warm restart. 
- 
dict_initndarray of shape (n_components, n_features), default=None
- 
Initial values for the dictionary, for warm restart. 
- 
verbosebool, default=False
- 
To control the verbosity of the procedure. 
- 
split_signbool, default=False
- 
Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. 
- 
random_stateint, RandomState instance or None, default=None
- 
Used for initializing the dictionary when dict_initis not specified, randomly shuffling the data whenshuffleis set toTrue, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See Glossary.
- 
positive_codebool, default=False
- 
Whether to enforce positivity when finding the code. New in version 0.20. 
- 
positive_dictbool, default=False
- 
Whether to enforce positivity when finding the dictionary New in version 0.20. 
- 
transform_max_iterint, default=1000
- 
Maximum number of iterations to perform if algorithm='lasso_cd'or'lasso_lars'.New in version 0.22. 
 
- 
- Attributes
- 
- 
components_ndarray of shape (n_components, n_features)
- 
dictionary atoms extracted from the data 
- 
error_array
- 
vector of errors at each iteration 
- 
n_iter_int
- 
Number of iterations run. 
 
- 
 NotesReferences: J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf) Examples>>> import numpy as np >>> from sklearn.datasets import make_sparse_coded_signal >>> from sklearn.decomposition import DictionaryLearning >>> X, dictionary, code = make_sparse_coded_signal( ... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10, ... random_state=42, ... ) >>> dict_learner = DictionaryLearning( ... n_components=15, transform_algorithm='lasso_lars', random_state=42, ... ) >>> X_transformed = dict_learner.fit_transform(X) We can check the level of sparsity of X_transformed:>>> np.mean(X_transformed == 0) 0.88... We can compare the average squared euclidean norm of the reconstruction error of the sparse coded signal relative to the squared euclidean norm of the original signal: >>> X_hat = X_transformed @ dict_learner.components_ >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) 0.07... Methodsfit(X[, y])Fit the model from data in X. fit_transform(X[, y])Fit to data, then transform it. get_params([deep])Get parameters for this estimator. set_params(**params)Set the parameters of this estimator. transform(X)Encode the data as a sparse combination of the dictionary atoms. - 
fit(X, y=None)[source]
- 
Fit the model from data in X. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Training vector, where n_samplesin the number of samples andn_featuresis the number of features.
- 
yIgnored
 
- 
- Returns
- 
- 
selfobject
- 
Returns the object itself. 
 
- 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Fit to data, then transform it. Fits transformer to Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Input samples. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter transform_algorithm.- Parameters
- 
- 
Xndarray of shape (n_samples, n_features)
- 
Test data to be transformed, must have the same number of features as the data used to train the model. 
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_components)
- 
Transformed data. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.DictionaryLearning.html