sklearn.feature_selection.GenericUnivariateSelect
- 
class sklearn.feature_selection.GenericUnivariateSelect(score_func=<function f_classif>, *, mode='percentile', param=1e-05)[source]
- 
Univariate feature selector with configurable strategy. Read more in the User Guide. - Parameters
- 
- 
score_funccallable, default=f_classif
- 
Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores. 
- 
mode{‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}, default=’percentile’
- 
Feature selection mode. 
- 
paramfloat or int depending on the feature selection mode, default=1e-5
- 
Parameter of the corresponding mode. 
 
- 
- Attributes
- 
- 
scores_array-like of shape (n_features,)
- 
Scores of features. 
- 
pvalues_array-like of shape (n_features,)
- 
p-values of feature scores, None if score_funcreturned scores only.
 
- 
 See also - 
 f_classif
- 
ANOVA F-value between label/feature for classification tasks. 
- 
 mutual_info_classif
- 
Mutual information for a discrete target. 
- 
 chi2
- 
Chi-squared stats of non-negative features for classification tasks. 
- 
 f_regression
- 
F-value between label/feature for regression tasks. 
- 
 mutual_info_regression
- 
Mutual information for a continuous target. 
- 
 SelectPercentile
- 
Select features based on percentile of the highest scores. 
- 
 SelectKBest
- 
Select features based on the k highest scores. 
- 
 SelectFpr
- 
Select features based on a false positive rate test. 
- 
 SelectFdr
- 
Select features based on an estimated false discovery rate. 
- 
 SelectFwe
- 
Select features based on family-wise error rate. 
 Examples>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.feature_selection import GenericUnivariateSelect, chi2 >>> X, y = load_breast_cancer(return_X_y=True) >>> X.shape (569, 30) >>> transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20) >>> X_new = transformer.fit_transform(X, y) >>> X_new.shape (569, 20) Methodsfit(X, y)Run score function on (X, y) and get the appropriate features. fit_transform(X[, y])Fit to data, then transform it. get_params([deep])Get parameters for this estimator. get_support([indices])Get a mask, or integer index, of the features selected Reverse the transformation operation set_params(**params)Set the parameters of this estimator. transform(X)Reduce X to the selected features. - 
fit(X, y)[source]
- 
Run score function on (X, y) and get the appropriate features. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
The training input samples. 
- 
yarray-like of shape (n_samples,)
- 
The target values (class labels in classification, real numbers in regression). 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Fit to data, then transform it. Fits transformer to Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Input samples. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
get_support(indices=False)[source]
- 
Get a mask, or integer index, of the features selected - Parameters
- 
- 
indicesbool, default=False
- 
If True, the return value will be an array of integers, rather than a boolean mask. 
 
- 
- Returns
- 
- 
supportarray
- 
An index that selects the retained features from a feature vector. If indicesis False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. Ifindicesis True, this is an integer array of shape [# output features] whose values are indices into the input feature vector.
 
- 
 
 - 
inverse_transform(X)[source]
- 
Reverse the transformation operation - Parameters
- 
- 
Xarray of shape [n_samples, n_selected_features]
- 
The input samples. 
 
- 
- Returns
- 
- 
X_rarray of shape [n_samples, n_original_features]
- 
Xwith columns of zeros inserted where features would have been removed bytransform.
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Reduce X to the selected features. - Parameters
- 
- 
Xarray of shape [n_samples, n_features]
- 
The input samples. 
 
- 
- Returns
- 
- 
X_rarray of shape [n_samples, n_selected_features]
- 
The input samples with only the selected features. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html