sklearn.manifold.locally_linear_embedding
- 
sklearn.manifold.locally_linear_embedding(X, *, n_neighbors, n_components, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, random_state=None, n_jobs=None)[source]
- 
Perform a Locally Linear Embedding analysis on the data. Read more in the User Guide. - Parameters
- 
- 
X{array-like, NearestNeighbors}
- 
Sample data, shape = (n_samples, n_features), in the form of a numpy array or a NearestNeighbors object. 
- 
n_neighborsint
- 
number of neighbors to consider for each point. 
- 
n_componentsint
- 
number of coordinates for the manifold. 
- 
regfloat, default=1e-3
- 
regularization constant, multiplies the trace of the local covariance matrix of the distances. 
- 
eigen_solver{‘auto’, ‘arpack’, ‘dense’}, default=’auto’
- 
auto : algorithm will attempt to choose the best method for input data - 
arpackuse arnoldi iteration in shift-invert mode.
- 
For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. 
- 
denseuse standard dense matrix operations for the eigenvalue
- 
decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. 
 
- 
- 
tolfloat, default=1e-6
- 
Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’. 
- 
max_iterint, default=100
- 
maximum number of iterations for the arpack solver. 
- 
method{‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}, default=’standard’
- 
- 
standarduse the standard locally linear embedding algorithm.
- 
see reference [1] 
- 
hessianuse the Hessian eigenmap method. This method requires
- 
n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2] 
- 
modifieduse the modified locally linear embedding algorithm.
- 
see reference [3] 
- 
ltsause local tangent space alignment algorithm
- 
see reference [4] 
 
- 
- 
hessian_tolfloat, default=1e-4
- 
Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’ 
- 
modified_tolfloat, default=1e-12
- 
Tolerance for modified LLE method. Only used if method == ‘modified’ 
- 
random_stateint, RandomState instance, default=None
- 
Determines the random number generator when solver== ‘arpack’. Pass an int for reproducible results across multiple function calls. See :term:Glossary <random_state>.
- 
n_jobsint or None, default=None
- 
The number of parallel jobs to run for neighbors search. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.
 
- 
- Returns
- 
- 
Yarray-like, shape [n_samples, n_components]
- 
Embedding vectors. 
- 
squared_errorfloat
- 
Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y, 'fro')**2, where W are the reconstruction weights.
 
- 
 References- 
1
- 
Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). 
- 
2
- 
Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). 
- 
3
- 
Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 
- 
4
- 
Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) 
 
Examples using sklearn.manifold.locally_linear_embedding
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.manifold.locally_linear_embedding.html