sklearn.datasets.make_friedman1
- 
sklearn.datasets.make_friedman1(n_samples=100, n_features=10, *, noise=0.0, random_state=None)[source]
- 
Generate the “Friedman #1” regression problem. This dataset is described in Friedman [1] and Breiman [2]. Inputs Xare independent features uniformly distributed on the interval [0, 1]. The outputyis created according to the formula:y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the n_featuresfeatures, only 5 are actually used to computey. The remaining features are independent ofy.The number of features has to be >= 5. Read more in the User Guide. - Parameters
- 
- 
n_samplesint, default=100
- 
The number of samples. 
- 
n_featuresint, default=10
- 
The number of features. Should be at least 5. 
- 
noisefloat, default=0.0
- 
The standard deviation of the gaussian noise applied to the output. 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, n_features)
- 
The input samples. 
- 
yndarray of shape (n_samples,)
- 
The output values. 
 
- 
 References- 
1
- 
J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991. 
- 
2
- 
L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996. 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_friedman1.html