sklearn.utils.validation.check_is_fitted
- 
sklearn.utils.validation.check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=<built-in function all>)[source]
- 
Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message. This utility is meant to be used internally by estimators themselves, typically in their own predict / transform methods. - Parameters
- 
- 
estimatorestimator instance
- 
estimator instance for which the check is performed. 
- 
attributesstr, list or tuple of str, default=None
- 
Attribute name(s) given as string or a list/tuple of strings Eg.: ["coef_", "estimator_", ...], "coef_"If None,estimatoris considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore.
- 
msgstr, default=None
- 
The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’ with appropriate arguments before using this estimator.” For custom messages if “%(name)s” is present in the message string, it is substituted for the estimator name. Eg. : “Estimator, %(name)s, must be fitted before sparsifying”. 
- 
all_or_anycallable, {all, any}, default=all
- 
Specify whether all or any of the given attributes must exist. 
 
- 
- Returns
- 
- None
 
- Raises
- 
- NotFittedError
- 
If the attributes are not found. 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.utils.validation.check_is_fitted.html