sklearn.ensemble.VotingRegressor
- 
class sklearn.ensemble.VotingRegressor(estimators, *, weights=None, n_jobs=None, verbose=False)[source]
- 
Prediction voting regressor for unfitted estimators. A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. Read more in the User Guide. New in version 0.21. - Parameters
- 
- 
estimatorslist of (str, estimator) tuples
- 
Invoking the fitmethod on theVotingRegressorwill fit clones of those original estimators that will be stored in the class attributeself.estimators_. An estimator can be set to'drop'usingset_params.Changed in version 0.21: 'drop'is accepted. Using None was deprecated in 0.22 and support was removed in 0.24.
- 
weightsarray-like of shape (n_regressors,), default=None
- 
Sequence of weights ( floatorint) to weight the occurrences of predicted values before averaging. Uses uniform weights ifNone.
- 
n_jobsint, default=None
- 
The number of jobs to run in parallel for fit.Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.
- 
verbosebool, default=False
- 
If True, the time elapsed while fitting will be printed as it is completed. New in version 0.23. 
 
- 
- Attributes
- 
- 
estimators_list of regressors
- 
The collection of fitted sub-estimators as defined in estimatorsthat are not ‘drop’.
- 
named_estimators_Bunch
- 
Attribute to access any fitted sub-estimators by name. New in version 0.20. 
 
- 
 See also - 
 VotingClassifier
- 
Soft Voting/Majority Rule classifier. 
 Examples>>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> from sklearn.ensemble import RandomForestRegressor >>> from sklearn.ensemble import VotingRegressor >>> r1 = LinearRegression() >>> r2 = RandomForestRegressor(n_estimators=10, random_state=1) >>> X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]) >>> y = np.array([2, 6, 12, 20, 30, 42]) >>> er = VotingRegressor([('lr', r1), ('rf', r2)]) >>> print(er.fit(X, y).predict(X)) [ 3.3 5.7 11.8 19.7 28. 40.3]Methodsfit(X, y[, sample_weight])Fit the estimators. fit_transform(X[, y])Return class labels or probabilities for each estimator. get_params([deep])Get the parameters of an estimator from the ensemble. predict(X)Predict regression target for X. score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction. set_params(**params)Set the parameters of an estimator from the ensemble. transform(X)Return predictions for X for each estimator. - 
fit(X, y, sample_weight=None)[source]
- 
Fit the estimators. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Training vectors, where n_samples is the number of samples and n_features is the number of features. 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. 
 
- 
- Returns
- 
- 
selfobject
- 
Fitted estimator. 
 
- 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Return class labels or probabilities for each estimator. Return predictions for X for each estimator. - Parameters
- 
- 
X{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
- 
Input samples 
- 
yndarray of shape (n_samples,), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get the parameters of an estimator from the ensemble. Returns the parameters given in the constructor as well as the estimators contained within the estimatorsparameter.- Parameters
- 
- 
deepbool, default=True
- 
Setting it to True gets the various estimators and the parameters of the estimators as well. 
 
- 
 
 - 
predict(X)[source]
- 
Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
The input samples. 
 
- 
- Returns
- 
- 
yndarray of shape (n_samples,)
- 
The predicted values. 
 
- 
 
 - 
score(X, y, sample_weight=None)[source]
- 
Return the coefficient of determination \(R^2\) of the prediction. The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
True values for X.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
\(R^2\) of self.predict(X)wrt.y.
 
- 
 NotesThe \(R^2\) score used when calling scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
 - 
set_params(**params)[source]
- 
Set the parameters of an estimator from the ensemble. Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the estimators contained inestimators.- Parameters
- 
- 
**paramskeyword arguments
- 
Specific parameters using e.g. set_params(parameter_name=new_value). In addition, to setting the parameters of the estimator, the individual estimator of the estimators can also be set, or can be removed by setting them to ‘drop’.
 
- 
 
 - 
transform(X)[source]
- 
Return predictions for X for each estimator. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
The input samples. 
 
- 
- Returns
- 
- predictions: ndarray of shape (n_samples, n_classifiers)
- 
Values predicted by each regressor. 
 
 
 
Examples using sklearn.ensemble.VotingRegressor
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.VotingRegressor.html