sklearn.decomposition.KernelPCA
- 
class sklearn.decomposition.KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None)[source]
- 
Kernel Principal component analysis (KPCA). Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels). Read more in the User Guide. - Parameters
- 
- 
n_componentsint, default=None
- 
Number of components. If None, all non-zero components are kept. 
- 
kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘cosine’, ‘precomputed’}, default=’linear’
- 
Kernel used for PCA. 
- 
gammafloat, default=None
- 
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels. If gammaisNone, then it is set to1/n_features.
- 
degreeint, default=3
- 
Degree for poly kernels. Ignored by other kernels. 
- 
coef0float, default=1
- 
Independent term in poly and sigmoid kernels. Ignored by other kernels. 
- 
kernel_paramsdict, default=None
- 
Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. 
- 
alphafloat, default=1.0
- 
Hyperparameter of the ridge regression that learns the inverse transform (when fit_inverse_transform=True). 
- 
fit_inverse_transformbool, default=False
- 
Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-image of a point) 
- 
eigen_solver{‘auto’, ‘dense’, ‘arpack’}, default=’auto’
- 
Select eigensolver to use. If n_components is much less than the number of training samples, arpack may be more efficient than the dense eigensolver. 
- 
tolfloat, default=0
- 
Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack. 
- 
max_iterint, default=None
- 
Maximum number of iterations for arpack. If None, optimal value will be chosen by arpack. 
- 
remove_zero_eigbool, default=False
- 
If True, then all components with zero eigenvalues are removed, so that the number of components in the output may be < n_components (and sometimes even zero due to numerical instability). When n_components is None, this parameter is ignored and components with zero eigenvalues are removed regardless. 
- 
random_stateint, RandomState instance or None, default=None
- 
Used when eigen_solver== ‘arpack’. Pass an int for reproducible results across multiple function calls. See Glossary.New in version 0.18. 
- 
copy_Xbool, default=True
- 
If True, input X is copied and stored by the model in the X_fit_attribute. If no further changes will be done to X, settingcopy_X=Falsesaves memory by storing a reference.New in version 0.18. 
- 
n_jobsint, default=None
- 
The number of parallel jobs to run. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.New in version 0.18. 
 
- 
- Attributes
- 
- 
lambdas_ndarray of shape (n_components,)
- 
Eigenvalues of the centered kernel matrix in decreasing order. If n_componentsandremove_zero_eigare not set, then all values are stored.
- 
alphas_ndarray of shape (n_samples, n_components)
- 
Eigenvectors of the centered kernel matrix. If n_componentsandremove_zero_eigare not set, then all components are stored.
- 
dual_coef_ndarray of shape (n_samples, n_features)
- 
Inverse transform matrix. Only available when fit_inverse_transformis True.
- 
X_transformed_fit_ndarray of shape (n_samples, n_components)
- 
Projection of the fitted data on the kernel principal components. Only available when fit_inverse_transformis True.
- 
X_fit_ndarray of shape (n_samples, n_features)
- 
The data used to fit the model. If copy_X=False, thenX_fit_is a reference. This attribute is used for the calls to transform.
 
- 
 References- Kernel PCA was introduced in:
- 
Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods, MIT Press, Cambridge, MA, USA 327-352. 
 Examples>>> from sklearn.datasets import load_digits >>> from sklearn.decomposition import KernelPCA >>> X, _ = load_digits(return_X_y=True) >>> transformer = KernelPCA(n_components=7, kernel='linear') >>> X_transformed = transformer.fit_transform(X) >>> X_transformed.shape (1797, 7) Methodsfit(X[, y])Fit the model from data in X. fit_transform(X[, y])Fit the model from data in X and transform X. get_params([deep])Get parameters for this estimator. Transform X back to original space. set_params(**params)Set the parameters of this estimator. transform(X)Transform X. - 
fit(X, y=None)[source]
- 
Fit the model from data in X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Training vector, where n_samples in the number of samples and n_features is the number of features. 
 
- 
- Returns
- 
- 
selfobject
- 
Returns the instance itself. 
 
- 
 
 - 
fit_transform(X, y=None, **params)[source]
- 
Fit the model from data in X and transform X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Training vector, where n_samples in the number of samples and n_features is the number of features. 
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_components)
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
inverse_transform(X)[source]
- 
Transform X back to original space. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_components)
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_features)
 
- 
 References“Learning to Find Pre-Images”, G BakIr et al, 2004. 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Transform X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_components)
 
- 
 
 
Examples using sklearn.decomposition.KernelPCA
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.KernelPCA.html