sklearn.decomposition.sparse_encode
- 
sklearn.decomposition.sparse_encode(X, dictionary, *, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=None, check_input=True, verbose=0, positive=False)[source]
- 
Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array codesuch that:X ~= code * dictionary Read more in the User Guide. - Parameters
- 
- 
Xndarray of shape (n_samples, n_features)
- 
Data matrix. 
- 
dictionaryndarray of shape (n_components, n_features)
- 
The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. 
- 
gramndarray of shape (n_components, n_components), default=None
- 
Precomputed Gram matrix, dictionary * dictionary'.
- 
covndarray of shape (n_components, n_samples), default=None
- 
Precomputed covariance, dictionary' * X.
- 
algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’lasso_lars’
- 
The algorithm used: - 
'lars': uses the least angle regression method (linear_model.lars_path);
- 
'lasso_lars': uses Lars to compute the Lasso solution;
- 
'lasso_cd': uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse;
- 
'omp': uses orthogonal matching pursuit to estimate the sparse solution;
- 
'threshold': squashes to zero all coefficients less than regularization from the projectiondictionary * data'.
 
- 
- 
n_nonzero_coefsint, default=None
- 
Number of nonzero coefficients to target in each column of the solution. This is only used by algorithm='lars'andalgorithm='omp'and is overridden byalphain theompcase. IfNone, thenn_nonzero_coefs=int(n_features / 10).
- 
alphafloat, default=None
- 
If algorithm='lasso_lars'oralgorithm='lasso_cd',alphais the penalty applied to the L1 norm. Ifalgorithm='threshold',alphais the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp',alphais the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs. IfNone, default to 1.
- 
copy_covbool, default=True
- 
Whether to copy the precomputed covariance matrix; if False, it may be overwritten.
- 
initndarray of shape (n_samples, n_components), default=None
- 
Initialization value of the sparse codes. Only used if algorithm='lasso_cd'.
- 
max_iterint, default=1000
- 
Maximum number of iterations to perform if algorithm='lasso_cd'or'lasso_lars'.
- 
n_jobsint, default=None
- 
Number of parallel jobs to run. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.
- 
check_inputbool, default=True
- 
If False, the input arrays X and dictionary will not be checked.
- 
verboseint, default=0
- 
Controls the verbosity; the higher, the more messages. 
- 
positivebool, default=False
- 
Whether to enforce positivity when finding the encoding. New in version 0.20. 
 
- 
- Returns
- 
- 
codendarray of shape (n_samples, n_components)
- 
The sparse codes 
 
- 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.sparse_encode.html