sklearn.metrics.DetCurveDisplay
- 
class sklearn.metrics.DetCurveDisplay(*, fpr, fnr, estimator_name=None, pos_label=None)[source]
- 
DET curve visualization. It is recommend to use plot_det_curveto create a visualizer. All parameters are stored as attributes.Read more in the User Guide. New in version 0.24. - Parameters
- 
- 
fprndarray
- 
False positive rate. 
- 
tprndarray
- 
True positive rate. 
- 
estimator_namestr, default=None
- 
Name of estimator. If None, the estimator name is not shown. 
- 
pos_labelstr or int, default=None
- 
The label of the positive class. 
 
- 
- Attributes
- 
- 
line_matplotlib Artist
- 
DET Curve. 
- 
ax_matplotlib Axes
- 
Axes with DET Curve. 
- 
figure_matplotlib Figure
- 
Figure containing the curve. 
 
- 
 See also - 
 det_curve
- 
Compute error rates for different probability thresholds. 
- 
 plot_det_curve
- 
Plot detection error tradeoff (DET) curve. 
 Examples>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([0, 0, 1, 1]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, fnr, thresholds = metrics.det_curve(y, pred) >>> display = metrics.DetCurveDisplay( ... fpr=fpr, fnr=fnr, estimator_name='example estimator' ... ) >>> display.plot() >>> plt.show() Methodsplot([ax, name])Plot visualization. - 
plot(ax=None, *, name=None, **kwargs)[source]
- 
Plot visualization. - Parameters
- 
- 
axmatplotlib axes, default=None
- 
Axes object to plot on. If None, a new figure and axes is created.
- 
namestr, default=None
- 
Name of DET curve for labeling. If None, use the name of the estimator.
 
- 
- Returns
- 
- 
displayDetCurveDisplay
- 
Object that stores computed values. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.DetCurveDisplay.html