sklearn.datasets.make_sparse_uncorrelated
- 
Generate a random regression problem with sparse uncorrelated design. This dataset is described in Celeux et al [1]. as: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the User Guide. - Parameters
- 
- 
n_samplesint, default=100
- 
The number of samples. 
- 
n_featuresint, default=10
- 
The number of features. 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, n_features)
- 
The input samples. 
- 
yndarray of shape (n_samples,)
- 
The output values. 
 
- 
 References- 
1
- 
G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation”, 2009. 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_sparse_uncorrelated.html