sklearn.metrics.pairwise.cosine_similarity
- 
sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)[source]
- 
Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the User Guide. - Parameters
- 
- 
X{ndarray, sparse matrix} of shape (n_samples_X, n_features)
- 
Input data. 
- 
Y{ndarray, sparse matrix} of shape (n_samples_Y, n_features), default=None
- 
Input data. If None, the output will be the pairwise similarities between all samples inX.
- 
dense_outputbool, default=True
- 
Whether to return dense output even when the input is sparse. If False, the output is sparse if both input arrays are sparse.New in version 0.17: parameter dense_outputfor dense output.
 
- 
- Returns
- 
- 
kernel matrixndarray of shape (n_samples_X, n_samples_Y)
 
- 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html