sklearn.preprocessing.KernelCenterer
- 
class sklearn.preprocessing.KernelCenterer[source]
- 
Center a kernel matrix. Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the User Guide. - Attributes
- 
- 
K_fit_rows_array of shape (n_samples,)
- 
Average of each column of kernel matrix. 
- 
K_fit_all_float
- 
Average of kernel matrix. 
 
- 
 Examples>>> from sklearn.preprocessing import KernelCenterer >>> from sklearn.metrics.pairwise import pairwise_kernels >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> K = pairwise_kernels(X, metric='linear') >>> K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) >>> transformer = KernelCenterer().fit(K) >>> transformer KernelCenterer() >>> transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]])Methodsfit(K[, y])Fit KernelCenterer fit_transform(X[, y])Fit to data, then transform it. get_params([deep])Get parameters for this estimator. set_params(**params)Set the parameters of this estimator. transform(K[, copy])Center kernel matrix. - 
fit(K, y=None)[source]
- 
Fit KernelCenterer - Parameters
- 
- 
Kndarray of shape (n_samples, n_samples)
- 
Kernel matrix. 
- 
yNone
- 
Ignored. 
 
- 
- Returns
- 
- 
selfobject
- 
Fitted transformer. 
 
- 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Fit to data, then transform it. Fits transformer to Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Input samples. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(K, copy=True)[source]
- 
Center kernel matrix. - Parameters
- 
- 
Kndarray of shape (n_samples1, n_samples2)
- 
Kernel matrix. 
- 
copybool, default=True
- 
Set to False to perform inplace computation. 
 
- 
- Returns
- 
- 
K_newndarray of shape (n_samples1, n_samples2)
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.KernelCenterer.html