sklearn.feature_selection.f_classif
- 
sklearn.feature_selection.f_classif(X, y)[source]
- 
Compute the ANOVA F-value for the provided sample. Read more in the User Guide. - Parameters
- 
- 
X{array-like, sparse matrix} shape = [n_samples, n_features]
- 
The set of regressors that will be tested sequentially. 
- 
yarray of shape(n_samples)
- 
The data matrix. 
 
- 
- Returns
- 
- 
Farray, shape = [n_features,]
- 
The set of F values. 
- 
pvalarray, shape = [n_features,]
- 
The set of p-values. 
 
- 
 See also - 
 chi2
- 
Chi-squared stats of non-negative features for classification tasks. 
- 
 f_regression
- 
F-value between label/feature for regression tasks. 
 
Examples using sklearn.feature_selection.f_classif
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.feature_selection.f_classif.html