sklearn.datasets.make_sparse_coded_signal
- 
sklearn.datasets.make_sparse_coded_signal(n_samples, *, n_components, n_features, n_nonzero_coefs, random_state=None)[source]
- 
Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the User Guide. - Parameters
- 
- 
n_samplesint
- 
Number of samples to generate 
- 
n_componentsint
- 
Number of components in the dictionary 
- 
n_featuresint
- 
Number of features of the dataset to generate 
- 
n_nonzero_coefsint
- 
Number of active (non-zero) coefficients in each sample 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
datandarray of shape (n_features, n_samples)
- 
The encoded signal (Y). 
- 
dictionaryndarray of shape (n_features, n_components)
- 
The dictionary with normalized components (D). 
- 
codendarray of shape (n_components, n_samples)
- 
The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). 
 
- 
 
Examples using sklearn.datasets.make_sparse_coded_signal
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_sparse_coded_signal.html