sklearn.linear_model.OrthogonalMatchingPursuit
- 
class sklearn.linear_model.OrthogonalMatchingPursuit(*, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto')[source]
- 
Orthogonal Matching Pursuit model (OMP). Read more in the User Guide. - Parameters
- 
- 
n_nonzero_coefsint, default=None
- 
Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. 
- 
tolfloat, default=None
- 
Maximum norm of the residual. If not None, overrides n_nonzero_coefs. 
- 
fit_interceptbool, default=True
- 
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). 
- 
normalizebool, default=True
- 
This parameter is ignored when fit_interceptis set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScalerbefore callingfiton an estimator withnormalize=False.
- 
precompute‘auto’ or bool, default=’auto’
- 
Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when n_targets or n_samples is very large. Note that if you already have such matrices, you can pass them directly to the fit method. 
 
- 
- Attributes
- 
- 
coef_ndarray of shape (n_features,) or (n_targets, n_features)
- 
Parameter vector (w in the formula). 
- 
intercept_float or ndarray of shape (n_targets,)
- 
Independent term in decision function. 
- 
n_iter_int or array-like
- 
Number of active features across every target. 
- 
n_nonzero_coefs_int
- 
The number of non-zero coefficients in the solution. If n_nonzero_coefsis None andtolis None this value is either set to 10% ofn_featuresor 1, whichever is greater.
 
- 
 See also NotesOrthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf Examples>>> from sklearn.linear_model import OrthogonalMatchingPursuit >>> from sklearn.datasets import make_regression >>> X, y = make_regression(noise=4, random_state=0) >>> reg = OrthogonalMatchingPursuit().fit(X, y) >>> reg.score(X, y) 0.9991... >>> reg.predict(X[:1,]) array([-78.3854...]) Methodsfit(X, y)Fit the model using X, y as training data. get_params([deep])Get parameters for this estimator. predict(X)Predict using the linear model. score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction. set_params(**params)Set the parameters of this estimator. - 
fit(X, y)[source]
- 
Fit the model using X, y as training data. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Training data. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_targets)
- 
Target values. Will be cast to X’s dtype if necessary 
 
- 
- Returns
- 
- 
selfobject
- 
returns an instance of self. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
predict(X)[source]
- 
Predict using the linear model. - Parameters
- 
- 
Xarray-like or sparse matrix, shape (n_samples, n_features)
- 
Samples. 
 
- 
- Returns
- 
- 
Carray, shape (n_samples,)
- 
Returns predicted values. 
 
- 
 
 - 
score(X, y, sample_weight=None)[source]
- 
Return the coefficient of determination \(R^2\) of the prediction. The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
True values for X.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
\(R^2\) of self.predict(X)wrt.y.
 
- 
 NotesThe \(R^2\) score used when calling scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.linear_model.OrthogonalMatchingPursuit
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html