sklearn.gaussian_process.kernels.Product
- 
class sklearn.gaussian_process.kernels.Product(k1, k2)[source]
- 
The Productkernel takes two kernels \(k_1\) and \(k_2\) and combines them via\[k_{prod}(X, Y) = k_1(X, Y) * k_2(X, Y)\]Note that the __mul__magic method is overridden, soProduct(RBF(), RBF())is equivalent to using the * operator withRBF() * RBF().Read more in the User Guide. New in version 0.18. - Parameters
- 
- 
k1Kernel
- 
The first base-kernel of the product-kernel 
- 
k2Kernel
- 
The second base-kernel of the product-kernel 
 
- 
- Attributes
- 
- 
 bounds
- 
Returns the log-transformed bounds on the theta. 
- 
 hyperparameters
- 
Returns a list of all hyperparameter. 
- 
 n_dims
- 
Returns the number of non-fixed hyperparameters of the kernel. 
- 
 requires_vector_input
- 
Returns whether the kernel is stationary. 
- 
 theta
- 
Returns the (flattened, log-transformed) non-fixed hyperparameters. 
 
- 
 
 Examples>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RBF, Product, ... ConstantKernel) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Product(ConstantKernel(2), RBF()) >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 1.0 >>> kernel 1.41**2 * RBF(length_scale=1) Methods__call__(X[, Y, eval_gradient])Return the kernel k(X, Y) and optionally its gradient. clone_with_theta(theta)Returns a clone of self with given hyperparameters theta. diag(X)Returns the diagonal of the kernel k(X, X). get_params([deep])Get parameters of this kernel. Returns whether the kernel is stationary. set_params(**params)Set the parameters of this kernel. - 
__call__(X, Y=None, eval_gradient=False)[source]
- 
Return the kernel k(X, Y) and optionally its gradient. - Parameters
- 
- 
Xarray-like of shape (n_samples_X, n_features) or list of object
- 
Left argument of the returned kernel k(X, Y) 
- 
Yarray-like of shape (n_samples_Y, n_features) or list of object, default=None
- 
Right argument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead. 
- 
eval_gradientbool, default=False
- 
Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. 
 
- 
- Returns
- 
- 
Kndarray of shape (n_samples_X, n_samples_Y)
- 
Kernel k(X, Y) 
- 
K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
- 
The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when eval_gradientis True.
 
- 
 
 - 
property bounds
- 
Returns the log-transformed bounds on the theta. - Returns
- 
- 
boundsndarray of shape (n_dims, 2)
- 
The log-transformed bounds on the kernel’s hyperparameters theta 
 
- 
 
 - 
clone_with_theta(theta)[source]
- 
Returns a clone of self with given hyperparameters theta. - Parameters
- 
- 
thetandarray of shape (n_dims,)
- 
The hyperparameters 
 
- 
 
 - 
diag(X)[source]
- 
Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. - Parameters
- 
- 
Xarray-like of shape (n_samples_X, n_features) or list of object
- 
Argument to the kernel. 
 
- 
- Returns
- 
- 
K_diagndarray of shape (n_samples_X,)
- 
Diagonal of kernel k(X, X) 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters of this kernel. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
property hyperparameters
- 
Returns a list of all hyperparameter. 
 - 
is_stationary()[source]
- 
Returns whether the kernel is stationary. 
 - 
property n_dims
- 
Returns the number of non-fixed hyperparameters of the kernel. 
 - 
property requires_vector_input
- 
Returns whether the kernel is stationary. 
 - 
set_params(**params)[source]
- 
Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns
- 
- self
 
 
 - 
property theta
- 
Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. - Returns
- 
- 
thetandarray of shape (n_dims,)
- 
The non-fixed, log-transformed hyperparameters of the kernel 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.gaussian_process.kernels.Product.html