sklearn.random_projection.GaussianRandomProjection
- 
class sklearn.random_projection.GaussianRandomProjection(n_components='auto', *, eps=0.1, random_state=None)[source]
- 
Reduce dimensionality through Gaussian random projection. The components of the random matrix are drawn from N(0, 1 / n_components). Read more in the User Guide. New in version 0.13. - Parameters
- 
- 
n_componentsint or ‘auto’, default=’auto’
- 
Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the epsparameter.It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. 
- 
epsfloat, default=0.1
- 
Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_componentsis set to ‘auto’. The value should be strictly positive.Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. 
- 
random_stateint, RandomState instance or None, default=None
- 
Controls the pseudo random number generator used to generate the projection matrix at fit time. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Attributes
- 
- 
n_components_int
- 
Concrete number of components computed when n_components=”auto”. 
- 
components_ndarray of shape (n_components, n_features)
- 
Random matrix used for the projection. 
 
- 
 See also Examples>>> import numpy as np >>> from sklearn.random_projection import GaussianRandomProjection >>> rng = np.random.RandomState(42) >>> X = rng.rand(100, 10000) >>> transformer = GaussianRandomProjection(random_state=rng) >>> X_new = transformer.fit_transform(X) >>> X_new.shape (100, 3947) Methodsfit(X[, y])Generate a sparse random projection matrix. fit_transform(X[, y])Fit to data, then transform it. get_params([deep])Get parameters for this estimator. set_params(**params)Set the parameters of this estimator. transform(X)Project the data by using matrix product with the random matrix - 
fit(X, y=None)[source]
- 
Generate a sparse random projection matrix. - Parameters
- 
- 
X{ndarray, sparse matrix} of shape (n_samples, n_features)
- 
Training set: only the shape is used to find optimal random matrix dimensions based on the theory referenced in the afore mentioned papers. 
- y
- 
Ignored 
 
- 
- Returns
- 
- self
 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Fit to data, then transform it. Fits transformer to Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Input samples. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Project the data by using matrix product with the random matrix - Parameters
- 
- 
X{ndarray, sparse matrix} of shape (n_samples, n_features)
- 
The input data to project into a smaller dimensional space. 
 
- 
- Returns
- 
- 
X_new{ndarray, sparse matrix} of shape (n_samples, n_components)
- 
Projected array. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.random_projection.GaussianRandomProjection.html