sklearn.svm.OneClassSVM
- 
class sklearn.svm.OneClassSVM(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=- 1)[source]
- 
Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the User Guide. - Parameters
- 
- 
kernel{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’
- 
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix. 
- 
degreeint, default=3
- 
Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. 
- 
gamma{‘scale’, ‘auto’} or float, default=’scale’
- 
Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. - if gamma='scale'(default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
- if ‘auto’, uses 1 / n_features.
 Changed in version 0.22: The default value of gammachanged from ‘auto’ to ‘scale’.
- if 
- 
coef0float, default=0.0
- 
Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. 
- 
tolfloat, default=1e-3
- 
Tolerance for stopping criterion. 
- 
nufloat, default=0.5
- 
An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. 
- 
shrinkingbool, default=True
- 
Whether to use the shrinking heuristic. See the User Guide. 
- 
cache_sizefloat, default=200
- 
Specify the size of the kernel cache (in MB). 
- 
verbosebool, default=False
- 
Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. 
- 
max_iterint, default=-1
- 
Hard limit on iterations within solver, or -1 for no limit. 
 
- 
- Attributes
- 
- 
class_weight_ndarray of shape (n_classes,)
- 
Multipliers of parameter C for each class. Computed based on the class_weightparameter.
- 
coef_ndarray of shape (1, n_features)
- 
Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. coef_is readonly property derived fromdual_coef_andsupport_vectors_.
- 
dual_coef_ndarray of shape (1, n_SV)
- 
Coefficients of the support vectors in the decision function. 
- 
fit_status_int
- 
0 if correctly fitted, 1 otherwise (will raise warning) 
- 
intercept_ndarray of shape (1,)
- 
Constant in the decision function. 
- 
n_support_ndarray of shape (n_classes,), dtype=int32
- 
Number of support vectors for each class. 
- 
offset_float
- 
Offset used to define the decision function from the raw scores. We have the relation: decision_function = score_samples - offset_. The offset is the opposite ofintercept_and is provided for consistency with other outlier detection algorithms.New in version 0.20. 
- 
shape_fit_tuple of int of shape (n_dimensions_of_X,)
- 
Array dimensions of training vector X.
- 
support_ndarray of shape (n_SV,)
- 
Indices of support vectors. 
- 
support_vectors_ndarray of shape (n_SV, n_features)
- 
Support vectors. 
 
- 
 Examples>>> from sklearn.svm import OneClassSVM >>> X = [[0], [0.44], [0.45], [0.46], [1]] >>> clf = OneClassSVM(gamma='auto').fit(X) >>> clf.predict(X) array([-1, 1, 1, 1, -1]) >>> clf.score_samples(X) array([1.7798..., 2.0547..., 2.0556..., 2.0561..., 1.7332...]) MethodsSigned distance to the separating hyperplane. fit(X[, y, sample_weight])Detects the soft boundary of the set of samples X. fit_predict(X[, y])Perform fit on X and returns labels for X. get_params([deep])Get parameters for this estimator. predict(X)Perform classification on samples in X. Raw scoring function of the samples. set_params(**params)Set the parameters of this estimator. - 
decision_function(X)[source]
- 
Signed distance to the separating hyperplane. Signed distance is positive for an inlier and negative for an outlier. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
The data matrix. 
 
- 
- Returns
- 
- 
decndarray of shape (n_samples,)
- 
Returns the decision function of the samples. 
 
- 
 
 - 
fit(X, y=None, sample_weight=None, **params)[source]
- 
Detects the soft boundary of the set of samples X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Set of samples, where n_samples is the number of samples and n_features is the number of features. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. 
- 
yIgnored
- 
not used, present for API consistency by convention. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 NotesIf X is not a C-ordered contiguous array it is copied. 
 - 
fit_predict(X, y=None)[source]
- 
Perform fit on X and returns labels for X. Returns -1 for outliers and 1 for inliers. - Parameters
- 
- 
X{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
- 
yIgnored
- 
Not used, present for API consistency by convention. 
 
- 
- Returns
- 
- 
yndarray of shape (n_samples,)
- 
1 for inliers, -1 for outliers. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
predict(X)[source]
- 
Perform classification on samples in X. For a one-class model, +1 or -1 is returned. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test, n_samples_train)
- 
For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). 
 
- 
- Returns
- 
- 
y_predndarray of shape (n_samples,)
- 
Class labels for samples in X. 
 
- 
 
 - 
score_samples(X)[source]
- 
Raw scoring function of the samples. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
The data matrix. 
 
- 
- Returns
- 
- 
score_samplesndarray of shape (n_samples,)
- 
Returns the (unshifted) scoring function of the samples. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.svm.OneClassSVM
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.svm.OneClassSVM.html