sklearn.metrics.PrecisionRecallDisplay
- 
class sklearn.metrics.PrecisionRecallDisplay(precision, recall, *, average_precision=None, estimator_name=None, pos_label=None)[source]
- 
Precision Recall visualization. It is recommend to use plot_precision_recall_curveto create a visualizer. All parameters are stored as attributes.Read more in the User Guide. - Parameters
- 
- 
precisionndarray
- 
Precision values. 
- 
recallndarray
- 
Recall values. 
- 
average_precisionfloat, default=None
- 
Average precision. If None, the average precision is not shown. 
- 
estimator_namestr, default=None
- 
Name of estimator. If None, then the estimator name is not shown. 
- 
pos_labelstr or int, default=None
- 
The class considered as the positive class. If None, the class will not be shown in the legend. New in version 0.24. 
 
- 
- Attributes
- 
- 
line_matplotlib Artist
- 
Precision recall curve. 
- 
ax_matplotlib Axes
- 
Axes with precision recall curve. 
- 
figure_matplotlib Figure
- 
Figure containing the curve. 
 
- 
 See also - 
 precision_recall_curve
- 
Compute precision-recall pairs for different probability thresholds. 
- 
 plot_precision_recall_curve
- 
Plot Precision Recall Curve for binary classifiers. 
 Examples>>> from sklearn.datasets import make_classification >>> from sklearn.metrics import (precision_recall_curve, ... PrecisionRecallDisplay) >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> precision, recall, _ = precision_recall_curve(y_test, predictions) >>> disp = PrecisionRecallDisplay(precision=precision, recall=recall) >>> disp.plot() Methodsplot([ax, name])Plot visualization. - 
plot(ax=None, *, name=None, **kwargs)[source]
- 
Plot visualization. Extra keyword arguments will be passed to matplotlib’s plot.- Parameters
- 
- 
axMatplotlib Axes, default=None
- 
Axes object to plot on. If None, a new figure and axes is created.
- 
namestr, default=None
- 
Name of precision recall curve for labeling. If None, use the name of the estimator.
- 
**kwargsdict
- 
Keyword arguments to be passed to matplotlib’s plot.
 
- 
- Returns
- 
- 
displayPrecisionRecallDisplay
- 
Object that stores computed values. 
 
- 
 
 
Examples using sklearn.metrics.PrecisionRecallDisplay
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.PrecisionRecallDisplay.html