sklearn.datasets.make_hastie_10_2
- 
sklearn.datasets.make_hastie_10_2(n_samples=12000, *, random_state=None)[source]
- 
Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target yis defined by:y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the User Guide. - Parameters
- 
- 
n_samplesint, default=12000
- 
The number of samples. 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, 10)
- 
The input samples. 
- 
yndarray of shape (n_samples,)
- 
The output values. 
 
- 
 See also - 
 make_gaussian_quantiles
- 
A generalization of this dataset approach. 
 References- 
1
- 
T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009. 
 
Examples using sklearn.datasets.make_hastie_10_2
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_hastie_10_2.html