sklearn.datasets.make_swiss_roll
- 
sklearn.datasets.make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None)[source]
- 
Generate a swiss roll dataset. Read more in the User Guide. - Parameters
- 
- 
n_samplesint, default=100
- 
The number of sample points on the S curve. 
- 
noisefloat, default=0.0
- 
The standard deviation of the gaussian noise. 
- 
random_stateint, RandomState instance or None, default=None
- 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- 
- Returns
- 
- 
Xndarray of shape (n_samples, 3)
- 
The points. 
- 
tndarray of shape (n_samples,)
- 
The univariate position of the sample according to the main dimension of the points in the manifold. 
 
- 
 NotesThe algorithm is from Marsland [1]. References- 
1
- 
S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py 
 
Examples using sklearn.datasets.make_swiss_roll
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_swiss_roll.html