sklearn.metrics.mean_gamma_deviance
- 
sklearn.metrics.mean_gamma_deviance(y_true, y_pred, *, sample_weight=None)[source]
- 
Mean Gamma deviance regression loss. Gamma deviance is equivalent to the Tweedie deviance with the power parameter power=2. It is invariant to scaling of the target variable, and measures relative errors.Read more in the User Guide. - Parameters
- 
- 
y_truearray-like of shape (n_samples,)
- 
Ground truth (correct) target values. Requires y_true > 0. 
- 
y_predarray-like of shape (n_samples,)
- 
Estimated target values. Requires y_pred > 0. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
lossfloat
- 
A non-negative floating point value (the best value is 0.0). 
 
- 
 Examples>>> from sklearn.metrics import mean_gamma_deviance >>> y_true = [2, 0.5, 1, 4] >>> y_pred = [0.5, 0.5, 2., 2.] >>> mean_gamma_deviance(y_true, y_pred) 1.0568... 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.mean_gamma_deviance.html