sklearn.covariance.GraphicalLasso
- 
class sklearn.covariance.GraphicalLasso(alpha=0.01, *, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)[source]
- 
Sparse inverse covariance estimation with an l1-penalized estimator. Read more in the User Guide. Changed in version v0.20: GraphLasso has been renamed to GraphicalLasso - Parameters
- 
- 
alphafloat, default=0.01
- 
The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. Range is (0, inf]. 
- 
mode{‘cd’, ‘lars’}, default=’cd’
- 
The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. 
- 
tolfloat, default=1e-4
- 
The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. Range is (0, inf]. 
- 
enet_tolfloat, default=1e-4
- 
The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is (0, inf]. 
- 
max_iterint, default=100
- 
The maximum number of iterations. 
- 
verbosebool, default=False
- 
If verbose is True, the objective function and dual gap are plotted at each iteration. 
- 
assume_centeredbool, default=False
- 
If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. 
 
- 
- Attributes
- 
- 
location_ndarray of shape (n_features,)
- 
Estimated location, i.e. the estimated mean. 
- 
covariance_ndarray of shape (n_features, n_features)
- 
Estimated covariance matrix 
- 
precision_ndarray of shape (n_features, n_features)
- 
Estimated pseudo inverse matrix. 
- 
n_iter_int
- 
Number of iterations run. 
 
- 
 See also - 
graphical_lasso,GraphicalLassoCV
 Examples>>> import numpy as np >>> from sklearn.covariance import GraphicalLasso >>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.2, 0.0, 0.3, 0.1], ... [0.0, 0.0, 0.1, 0.7]]) >>> np.random.seed(0) >>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0], ... cov=true_cov, ... size=200) >>> cov = GraphicalLasso().fit(X) >>> np.around(cov.covariance_, decimals=3) array([[0.816, 0.049, 0.218, 0.019], [0.049, 0.364, 0.017, 0.034], [0.218, 0.017, 0.322, 0.093], [0.019, 0.034, 0.093, 0.69 ]]) >>> np.around(cov.location_, decimals=3) array([0.073, 0.04 , 0.038, 0.143])Methodserror_norm(comp_cov[, norm, scaling, squared])Computes the Mean Squared Error between two covariance estimators. fit(X[, y])Fits the GraphicalLasso model to X. get_params([deep])Get parameters for this estimator. Getter for the precision matrix. mahalanobis(X)Computes the squared Mahalanobis distances of given observations. score(X_test[, y])Computes the log-likelihood of a Gaussian data set with self.covariance_as an estimator of its covariance matrix.set_params(**params)Set the parameters of this estimator. - 
error_norm(comp_cov, norm='frobenius', scaling=True, squared=True)[source]
- 
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm). - Parameters
- 
- 
comp_covarray-like of shape (n_features, n_features)
- 
The covariance to compare with. 
- 
norm{“frobenius”, “spectral”}, default=”frobenius”
- 
The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.covariance_).
- 
scalingbool, default=True
- 
If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. 
- 
squaredbool, default=True
- 
Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. 
 
- 
- Returns
- 
- 
resultfloat
- 
The Mean Squared Error (in the sense of the Frobenius norm) between selfandcomp_covcovariance estimators.
 
- 
 
 - 
fit(X, y=None)[source]
- 
Fits the GraphicalLasso model to X. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Data from which to compute the covariance estimate 
- 
yIgnored
- 
Not used, present for API consistency by convention. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
get_precision()[source]
- 
Getter for the precision matrix. - Returns
- 
- 
precision_array-like of shape (n_features, n_features)
- 
The precision matrix associated to the current covariance object. 
 
- 
 
 - 
mahalanobis(X)[source]
- 
Computes the squared Mahalanobis distances of given observations. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. 
 
- 
- Returns
- 
- 
distndarray of shape (n_samples,)
- 
Squared Mahalanobis distances of the observations. 
 
- 
 
 - 
score(X_test, y=None)[source]
- 
Computes the log-likelihood of a Gaussian data set with self.covariance_as an estimator of its covariance matrix.- Parameters
- 
- 
X_testarray-like of shape (n_samples, n_features)
- 
Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). 
- 
yIgnored
- 
Not used, present for API consistency by convention. 
 
- 
- Returns
- 
- 
resfloat
- 
The likelihood of the data set with self.covariance_as an estimator of its covariance matrix.
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.covariance.GraphicalLasso.html