sklearn.linear_model.LassoLarsIC
- 
class sklearn.linear_model.LassoLarsIC(criterion='aic', *, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False)[source]
- 
Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the User Guide. - Parameters
- 
- 
criterion{‘bic’ , ‘aic’}, default=’aic’
- 
The type of criterion to use. 
- 
fit_interceptbool, default=True
- 
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). 
- 
verbosebool or int, default=False
- 
Sets the verbosity amount. 
- 
normalizebool, default=True
- 
This parameter is ignored when fit_interceptis set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScalerbefore callingfiton an estimator withnormalize=False.
- 
precomputebool, ‘auto’ or array-like, default=’auto’
- 
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'let us decide. The Gram matrix can also be passed as argument.
- 
max_iterint, default=500
- 
Maximum number of iterations to perform. Can be used for early stopping. 
- 
epsfloat, default=np.finfo(float).eps
- 
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tolparameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.
- 
copy_Xbool, default=True
- 
If True, X will be copied; else, it may be overwritten. 
- 
positivebool, default=False
- 
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value ( alphas_[alphas_ > 0.].min()when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached.
 
- 
- Attributes
- 
- 
coef_array-like of shape (n_features,)
- 
parameter vector (w in the formulation formula) 
- 
intercept_float
- 
independent term in decision function. 
- 
alpha_float
- 
the alpha parameter chosen by the information criterion 
- 
alphas_array-like of shape (n_alphas + 1,) or list of such arrays
- 
Maximum of covariances (in absolute value) at each iteration. n_alphasis eithermax_iter,n_featuresor the number of nodes in the path withalpha >= alpha_min, whichever is smaller. If a list, it will be of lengthn_targets.
- 
n_iter_int
- 
number of iterations run by lars_path to find the grid of alphas. 
- 
criterion_array-like of shape (n_alphas,)
- 
The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which has the smallest information criterion is chosen. This value is larger by a factor of n_samplescompared to Eqns. 2.15 and 2.16 in (Zou et al, 2007).
 
- 
 See also - 
lars_path, LassoLars,LassoLarsCV
 NotesThe estimation of the number of degrees of freedom is given by: “On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion Examples>>> from sklearn import linear_model >>> reg = linear_model.LassoLarsIC(criterion='bic') >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) LassoLarsIC(criterion='bic') >>> print(reg.coef_) [ 0. -1.11...] Methodsfit(X, y[, copy_X])Fit the model using X, y as training data. get_params([deep])Get parameters for this estimator. predict(X)Predict using the linear model. score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction. set_params(**params)Set the parameters of this estimator. - 
fit(X, y, copy_X=None)[source]
- 
Fit the model using X, y as training data. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
training data. 
- 
yarray-like of shape (n_samples,)
- 
target values. Will be cast to X’s dtype if necessary 
- 
copy_Xbool, default=None
- 
If provided, this parameter will override the choice of copy_X made at instance creation. If True, X will be copied; else, it may be overwritten.
 
- 
- Returns
- 
- 
selfobject
- 
returns an instance of self. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
predict(X)[source]
- 
Predict using the linear model. - Parameters
- 
- 
Xarray-like or sparse matrix, shape (n_samples, n_features)
- 
Samples. 
 
- 
- Returns
- 
- 
Carray, shape (n_samples,)
- 
Returns predicted values. 
 
- 
 
 - 
score(X, y, sample_weight=None)[source]
- 
Return the coefficient of determination \(R^2\) of the prediction. The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
True values for X.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
\(R^2\) of self.predict(X)wrt.y.
 
- 
 NotesThe \(R^2\) score used when calling scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.linear_model.LassoLarsIC
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.LassoLarsIC.html