sklearn.kernel_approximation.PolynomialCountSketch
- 
class sklearn.kernel_approximation.PolynomialCountSketch(*, gamma=1.0, degree=2, coef0=0, n_components=100, random_state=None)[source]
- 
Polynomial kernel approximation via Tensor Sketch. Implements Tensor Sketch, which approximates the feature map of the polynomial kernel: K(X, Y) = (gamma * <X, Y> + coef0)^degree by efficiently computing a Count Sketch of the outer product of a vector with itself using Fast Fourier Transforms (FFT). Read more in the User Guide. New in version 0.24. - Parameters
- 
- 
gammafloat, default=1.0
- 
Parameter of the polynomial kernel whose feature map will be approximated. 
- 
degreeint, default=2
- 
Degree of the polynomial kernel whose feature map will be approximated. 
- 
coef0int, default=0
- 
Constant term of the polynomial kernel whose feature map will be approximated. 
- 
n_componentsint, default=100
- 
Dimensionality of the output feature space. Usually, n_components should be greater than the number of features in input samples in order to achieve good performance. The optimal score / run time balance is typically achieved around n_components = 10 * n_features, but this depends on the specific dataset being used. 
- 
random_stateint, RandomState instance, default=None
- 
Determines random number generation for indexHash and bitHash initialization. Pass an int for reproducible results across multiple function calls. See Glossary. 
 
- 
- Attributes
- 
- 
indexHash_ndarray of shape (degree, n_features), dtype=int64
- 
Array of indexes in range [0, n_components) used to represent the 2-wise independent hash functions for Count Sketch computation. 
- 
bitHash_ndarray of shape (degree, n_features), dtype=float32
- 
Array with random entries in {+1, -1}, used to represent the 2-wise independent hash functions for Count Sketch computation. 
 
- 
 Examples>>> from sklearn.kernel_approximation import PolynomialCountSketch >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> ps = PolynomialCountSketch(degree=3, random_state=1) >>> X_features = ps.fit_transform(X) >>> clf = SGDClassifier(max_iter=10, tol=1e-3) >>> clf.fit(X_features, y) SGDClassifier(max_iter=10) >>> clf.score(X_features, y) 1.0 Methodsfit(X[, y])Fit the model with X. fit_transform(X[, y])Fit to data, then transform it. get_params([deep])Get parameters for this estimator. set_params(**params)Set the parameters of this estimator. transform(X)Generate the feature map approximation for X. - 
fit(X, y=None)[source]
- 
Fit the model with X. Initializes the internal variables. The method needs no information about the distribution of data, so we only care about n_features in X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Training data, where n_samples in the number of samples and n_features is the number of features. 
 
- 
- Returns
- 
- 
selfobject
- 
Returns the transformer. 
 
- 
 
 - 
fit_transform(X, y=None, **fit_params)[source]
- 
Fit to data, then transform it. Fits transformer to Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Input samples. 
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- 
Target values (None for unsupervised transformations). 
- 
**fit_paramsdict
- 
Additional fit parameters. 
 
- 
- Returns
- 
- 
X_newndarray array of shape (n_samples, n_features_new)
- 
Transformed array. 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Generate the feature map approximation for X. - Parameters
- 
- 
X{array-like}, shape (n_samples, n_features)
- 
New data, where n_samples in the number of samples and n_features is the number of features. 
 
- 
- Returns
- 
- 
X_newarray-like, shape (n_samples, n_components)
 
- 
 
 
Examples using sklearn.kernel_approximation.PolynomialCountSketch
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.html