sklearn.decomposition.non_negative_factorization
- 
sklearn.decomposition.non_negative_factorization(X, W=None, H=None, n_components=None, *, init='warn', update_H=True, solver='cd', beta_loss='frobenius', tol=0.0001, max_iter=200, alpha=0.0, l1_ratio=0.0, regularization=None, random_state=None, verbose=0, shuffle=False)[source]
- 
Compute Non-negative Matrix Factorization (NMF). Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is: \[ \begin{align}\begin{aligned}0.5 * ||X - WH||_{Fro}^2 + alpha * l1_{ratio} * ||vec(W)||_1\\+ alpha * l1_{ratio} * ||vec(H)||_1\\+ 0.5 * alpha * (1 - l1_{ratio}) * ||W||_{Fro}^2\\+ 0.5 * alpha * (1 - l1_{ratio}) * ||H||_{Fro}^2\end{aligned}\end{align} \]Where: \(||A||_{Fro}^2 = \sum_{i,j} A_{ij}^2\) (Frobenius norm) \(||vec(A)||_1 = \sum_{i,j} abs(A_{ij})\) (Elementwise L1 norm) For multiplicative-update (‘mu’) solver, the Frobenius norm \((0.5 * ||X - WH||_{Fro}^2)\) can be changed into another beta-divergence loss, by changing the beta_loss parameter. The objective function is minimized with an alternating minimization of W and H. If H is given and update_H=False, it solves for W only. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Constant matrix. 
- 
Warray-like of shape (n_samples, n_components), default=None
- 
If init=’custom’, it is used as initial guess for the solution. 
- 
Harray-like of shape (n_components, n_features), default=None
- 
If init=’custom’, it is used as initial guess for the solution. If update_H=False, it is used as a constant, to solve for W only. 
- 
n_componentsint, default=None
- 
Number of components, if n_components is not set all features are kept. 
- 
init{‘random’, ‘nndsvd’, ‘nndsvda’, ‘nndsvdar’, ‘custom’}, default=None
- 
Method used to initialize the procedure. Valid options: - None: ‘nndsvd’ if n_components < n_features, otherwise ‘random’.
- 
- ‘random’: non-negative random matrices, scaled with:
- 
sqrt(X.mean() / n_components) 
 
- 
- ‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
- 
initialization (better for sparseness) 
 
- 
- ‘nndsvda’: NNDSVD with zeros filled with the average of X
- 
(better when sparsity is not desired) 
 
- 
- ‘nndsvdar’: NNDSVD with zeros filled with small random values
- 
(generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 
 
- ‘custom’: use custom matrices W and H if update_H=True. Ifupdate_H=False, then only custom matrix H is used.
 Changed in version 0.23: The default value of initchanged from ‘random’ to None in 0.23.
- 
update_Hbool, default=True
- 
Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. 
- 
solver{‘cd’, ‘mu’}, default=’cd’
- 
Numerical solver to use: - 
- ‘cd’ is a Coordinate Descent solver that uses Fast Hierarchical
- 
Alternating Least Squares (Fast HALS). 
 
- ‘mu’ is a Multiplicative Update solver.
 New in version 0.17: Coordinate Descent solver. New in version 0.19: Multiplicative Update solver. 
- 
- 
beta_lossfloat or {‘frobenius’, ‘kullback-leibler’, ‘itakura-saito’}, default=’frobenius’
- 
Beta divergence to be minimized, measuring the distance between X and the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’ (or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the input matrix X cannot contain zeros. Used only in ‘mu’ solver. New in version 0.19. 
- 
tolfloat, default=1e-4
- 
Tolerance of the stopping condition. 
- 
max_iterint, default=200
- 
Maximum number of iterations before timing out. 
- 
alphafloat, default=0.
- 
Constant that multiplies the regularization terms. 
- 
l1_ratiofloat, default=0.
- 
The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. 
- 
regularization{‘both’, ‘components’, ‘transformation’}, default=None
- 
Select whether the regularization affects the components (H), the transformation (W), both or none of them. 
- 
random_stateint, RandomState instance or None, default=None
- 
Used for NMF initialisation (when init== ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int for reproducible results across multiple function calls. See Glossary.
- 
verboseint, default=0
- 
The verbosity level. 
- 
shufflebool, default=False
- 
If true, randomize the order of coordinates in the CD solver. 
 
- 
- Returns
- 
- 
Wndarray of shape (n_samples, n_components)
- 
Solution to the non-negative least squares problem. 
- 
Hndarray of shape (n_components, n_features)
- 
Solution to the non-negative least squares problem. 
- 
n_iterint
- 
Actual number of iterations. 
 
- 
 ReferencesCichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9). Examples>>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import non_negative_factorization >>> W, H, n_iter = non_negative_factorization(X, n_components=2, ... init='random', random_state=0) 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.non_negative_factorization.html